首页> 外文OA文献 >Microphone Subset Selection for MVDR Beamformer Based Noise Reduction
【2h】

Microphone Subset Selection for MVDR Beamformer Based Noise Reduction

机译:基于mVDR波束形成器的降噪麦克风子集选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In large-scale wireless acoustic sensor networks (WASNs), many of the sensorswill only have a marginal contribution to a certain estimation task. Involvingall sensors increases the energy budget unnecessarily and decreases thelifetime of the WASN. Using microphone subset selection, also termed as sensorselection, the most informative sensors can be chosen from a set of candidatesensors to achieve a prescribed inference performance. In this paper, weconsider microphone subset selection for minimum variance distortionlessresponse (MVDR) beamformer based noise reduction. The best subset of sensors isdetermined by minimizing the transmission cost while constraining the outputnoise power (or signal-to-noise ratio). Assuming the statistical information oncorrelation matrices of the sensor measurements is available, the sensorselection problem for this model-driven scheme is first solved by utilizingconvex optimization techniques. In addition, to avoid estimating the statisticsrelated to all the candidate sensors beforehand, we also propose a data-drivenapproach to select the best subset using a greedy strategy. The performance ofthe greedy algorithm converges to that of the model-driven method, while itdisplays advantages in dynamic scenarios as well as on computationalcomplexity. Compared to a sparse MVDR or radius-based beamformer, experimentsshow that the proposed methods can guarantee the desired performance withsignificantly less transmission costs.
机译:在大规模无线声传感器网络(WASN)中,许多传感器将仅对某些估计任务有边际贡献。涉及所有传感器不必要地增加了能量预算并减少了WASN的寿命。使用麦克风子集选择(也称为传感器选择),可以从一组候选传感器中选择信息量最大的传感器,以实现规定的推理性能。在本文中,我们考虑了基于最小方差无失真响应(MVDR)波束形成器的麦克风子集选择,以降低噪声。传感器的最佳子集是通过在限制输出噪声功率(或信噪比)的同时最小化传输成本来确定的。假设关于传感器测量的相关矩阵的统计信息是可用的,则该模型驱动方案的传感器选择问题首先通过利用凸优化技术来解决。另外,为了避免预先估计与所有候选传感器相关的统计信息,我们还提出了一种数据驱动的方法,以使用贪婪策略选择最佳子集。贪婪算法的性能收敛于模型驱动方法的性能,同时在动态场景以及计算复杂性方面显示出优势。与稀疏的MVDR或基于半径的波束形成器相比,实验表明,所提出的方法可以保证所需的性能,而传输成本却大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号